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SHIFTING THE INERTIAL NAVIGATION PARADIGM WITH MEMS
TECHNOLOGY

Timothy P. Crain II *, Robert H. Bishop †, and Tye Brady $

”Why don’t you use MEMS?” is of the most common questions posed to navigation systems
engineers designing inertial navigation solutions in the modern era. The question stems from
a general understanding that great strides have been made in terrestrial MEMS accelerometers
and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a
unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to nav-
igation grade sensors in several key metrics. This paper will propose a paradigm shift where
the comparison in performance is between multiple MEMS devices and a single navigation
grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may
mathematically provide comparable performance to a single navigation grade device and be
competitive in terms power and mass allocations when viewed on a systems level. The im-
plication is that both inertial navigation system design and fault detection, identification, and
recovery could benefit from a system of MEMS devices in the same way that swarm sensing
has benefited Earth observation and astronomy. A survey of the state of the art in inertial sen-
sor accuracy scaled by mass and power will be provided to show the scaled error in MEMS
and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor
errors will be developed, and preliminary application to an Orion lunar skip atmospheric entry
trajectory will be explored.

INTRODUCTION

Section content (list to be removed in final version):

• restate concept from abstract

• introduce concept of multi-sensor/single-functional (MSSF) FDIR paradigm

• introduce concept of swarm sensing

• explain how the swarm can compete with the MSSF approach once all aspects are considered

The simplest answer to the hypothetical question asked in the abstract, ”Why don’t you use MEMS?”, is
that in a unit-to-unit comparison MEMS inertial sensing technology is at least an order of magnitude less
accurate than navigation and strategic grade sensors. If the accuracy from these high grade devices (dis-
cussed in the following section in comparison to MEMS devices) is required for vehicle level navigation
accuracy then MEMS are typically not considered in the early formulation phases of a project. Consider the
generalized spacecraft navigation system presented in Figure 1 where onboard sensors such as Global Posi-
tioning System (GPS) receivers, inertial measurement units (IMUs), and altimeters are used in conjunction
with external navigation updates to support the operation of guidance and control algorithms. In applications
such as human spaceflight where robustness and reliability are navigation priorities a multi-sensor, single
functionality (MSSF) approach is often employed where a small number of IMUs are employed to provide
enough cross-checking information to ensure that at least one functional unit is available for processing by
the navigation algorithms. In the MSSF approach, the navigation solution provided to guidance and control
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will use one and only one IMU based upon the FDIR and selection algorithms. The number of IMUs would
be determined by the desired depth of unit fault tolerance and a probabilistic evaluation of critical mission
phases. An example of an MSSF architecture is provided in Figure 2.

Spacecraft

Figure 1 General Navigation Flow

Figure 2 Multi-Sensor Single Function (MSSF) Example

Swarm sensing borrows from the paradigm employed by large sensor arrays and employs a larger number
of IMUs with less accuracy to provide robustness and sufficient uncorrelated measurements to compensate
for the error inherent in each sensor. This approach, illustrated in Figure 3, will employ a sensor management
module to combine the N outputs from the swarm into a single synthetic measurement for processing by
the navigation algorithm. While the sensor manager may de-weight or eliminate the output from poorly
performing IMUs, it is unlike the FDIR and sensor selection modules in the MSSF paradigm because it does
not necessarily try to select a single IMU output for the navigation algorithm.

This paper will specifically address two questions:

• Can a sufficient number of MEMS IMUs be employed in a swarm to provide an data with accuracy
equivalent to a single navigation grade IMU in an MSSF paradigm?

• Is there a systematic level benefit in mass, power, and robustness to employing a MEMS sensor swarm?



Figure 3 Sensor Swarm Example

The latter question can be answered even in the context of a MEMS swarm that does not quite duplicate
the accuracy of a navigation grade IMU and MSSF system.

SURVEY

Section content (list to be removed in final version):

• List 5 representative IMUs and their characteristics: MEMS1, MEMS2, Tactical, Navigation, Strategic

• discuss future of sensors in this area (evolutionary vs. revolutionary changes expected)

As a reference for each of these classes of IMUs, a Northrup Grumman SIRU ∗ , a Honeywell MIMUt,
a Northrup Grumman LN-200S ‡ , a Draper ISC § , and an advanced Draper ISC MEMS ¶ are provided with
representative specifications and mass, power, volume budgets.

ANALYTIC COMPARISON

Section content (list to be removed in final version):

• develop error metric for IMUs

• introduce concept of ”error-mass”

• introduce concept of ”error-power”

• show how both of these vary for the MSSF and swarm approaches on a trend plot

• develop simplified error equations for swarm error

Accelerometer Model

The measurement of the non-gravitational acceleration at the IMU is corrupted by errors due to nonorthog-
onality and misalignment of the axes, ra,, errors due to scale-factor uncertainties, Sa,, random biases, ba,, and
noise, ria,.

The measured non-gravitational acceleration, an9,m, can be written in terms of the true non-gravitational
acceleration, an9, as

∗Accelerometer option included. Performance of accels quoted from NEAR spacecraft.
t Accels performance from 1999 data sheet.
‡ Space grade version of LN200.
§ M/P/V includes star camera and accel board. Accels based on MMIMU data.
¶M/P/V includes star camera and accel board. Accels based on MMIMU data.



Table 1 Representative IMU Accuracy Specifications and Physical Characteristics

Value Strategic Navigation Tactical MEMS MEMS+

Example HW SIRU MIMU LN200S ISC ISC-A

Reference [1], [2], [3] [4], [9],[10] [5] [6],[7] [6], [7]

Accel (1σvalues)

Bias micro-G 50 100 300 2000 2000

Scale Factor PPM 175 175 300 600 600

Non-ortho micro-rad 70 70 100 1000 1000

Noise micro-G 10 100 35 100 100

Gyro (1σvalues)

ARW deg/rt-hr 0.00001 0.005 0.07 0.16 0.01

Scale Factor PPM 1.5 1 100 100 30

Non-ortho micro-rad 175 170 100 100 100

Bias Stability deg/hr 0.0003 0.005 1 3.3 1

Budgets

Mass kg 7.1 10.5 0.75 2.9 1.9

Volume cu cm 7751 7147 529 2234 1050

Power W 38 42 12 3.6 3.5

ang,m = (I + ra) (I + Sa ) (ang + ba + rja ) ,

where rja is a zero-mean stochastic process with

E ^rja (t) rjTa (T ) J = Qa S (t — T) .

The form of the nonorthogonality/axes-misalignment matrix and the scale-factor uncertainty matrix is such
that

0
⎡

'Ya,xz —'Ya,xy
⎤

Sa,x
⎡

0 0
⎤

ra = —'Ya,yz 0 'Ya,yx and Sa = 0 Sa,y 0	 .⎣

'Ya,zy —'Ya,zx 0	

⎦ ⎣

0 0 Sa,z 

⎦

For the purposes of this paper, we are primarily concerned with the instantaneous error on each accelerom-
eter

ea = ang,m — ang	 (1)

= (I + ra ) (I + Sa ) (ang + ba + rja) — ang	 (2)

≈(I + ra + Sa ) (ang + ba + rja) — ang	 (3)

≈(ra + Sa ) ang + (ba + rja)	 (4)
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Gyroscope Error Model

The measurement of the angular velocity of the spacecraft is corrupted by errors due to nonorthogonality
and misalignment of the axes, rg , errors due to scale-factor uncertainties, Sg , random biases, bg , and noise,
71g.

The measured angular velocity, w,,,,,, can be written in terms of the true angular velocity, w, as

w,,,,, = (I + rg ) (I + S g ) (w + bg + 71g ) ,

where 71g is a zero-mean stochastic process with

E {71g (t) 71Tg  (T)} = Qgδ(t — T) .

For the purposes of this study, a representative attitude error is desired as a metric and the error after 30
minutes of propagation on the gyros (epg = f eg (t)dt) will be assumed rather than the instantaneous gyro
attitude rate error (eg = w,,,,, — w). The rationale for this time interval is that 30 minutes provide adequate time
for both entry, descent, and landing and transient adverse orbital lighting when star tracker attitude updates
are not available. Therefore, the attitude error induced by gyro data processing will be modeled as

eg N 
L
(rg + Sg ) wtest + bg + 

g

t

J

 
At	 (5)

where wtest is a test true attitude rate utilized to drive scale factor and orthogonality error inputs, ag is the
angle random walk of the gyro in terms of deg/ rt — hr, and At is the 30 minute error sample interval.

MSSF vs. Swarm Navigation System Errors

Primary sensor performance in an MSSF system is typically not realized because of FDIR thresholds. This
is a direct result of the purpose of an MSSF system to use N-1 sensors to assure that one primary sensor is
operating within specifications but has some margin to prevent rapid switching between primary sensors. For
example, assume that failure detection thresholds are set at T times the 1Q error characteristic of an inertial
sensor

Qeff = TQspec	 (6)

The value of T may quickly exceed 4 for guaranteed performance in an MSSF, in other words it is possible
to select a sensor that is slightly out of spec for generation of the primary navigation solution.

The swarm sensor paradigm incorporates all data available and should guarantee a reduction compared to
the single unit error specification equivalent to

Qeff = 3
Q̂ c	

(7)

Examination of Figure 4 illustrates that after N = 10 the effective reduction in per unit error has reached
a point of diminishing returns in terms of improving accuracy. However, this also indicates that single unit
failures in a swarm system with 10 to 15 units will not adversely affect overall performance.

The first question that this paper addresses is that of when does a swarm of N sensors provide equivalent
performance to a single navigation grade sensor in an MSSF system:

Qeff/s = Qef f/MSSF	 (8)
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Figure 4 Conceptual Error Reduction from Swarm of N Sensors

or equivalently

3Qspec, s

√
W = TQspec,MSSF
N

Solving for N

N =
	

3Qspec,s
	 2(

TQspec,MSSF)	
(10)

if we let R represent the performance ratio between the swarm sensor and the MSSF sensor spec error
characteristics

	

R = 
Qspec,s	 (11)

Qspec, MSSF

	

N = (3
R 12	 (12)
T ///

	R = 
3 √

N	 (13)

The final form of this relationship is plotted in Figure 5 for various values of N. Using the rule of thumb
that N = 10 swarm sensors provide a practical limit in effective accuracy, the middle line marked with ’x’
data points provides the relationship between performance ratio R and MSSF threshold T for inertial accuracy
equivalence. For example, a swarm sensor inertial navigation system with 10 units, and a performance ratio
of 5, will match the assured accuracy of an MSSF system with a FDIR threshold of 5Qspec,MSSF.

(9)

then

or
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Figure 5 Plots of Constant N: Performance Ratio versus MSSF Threshold

Applying the error characteristic equations developed in Equations 4 and 5 to the representative error
specifications, mass, and power in Table 1 provides the single unit error characteristics in Table 2. The points
of interest in this table are that ..... to complete this section once Tye confirms representative characteristics
table

Table 2 Single Unit Error, Error*Mass, and Error*Power Characteristics

Value Strategic Navigation Tactical MEMS MEMS+

Error

Accel (µg) 305.0 445.0 735.0 3700.0 3700.0

Gyro (deg@30 minutes) 0.953 0.929 1.63 2.84 1.2

Error*Mass

Accel (µg-kg) 2165.5 2091.5 551.3 10730.0 7030.0

Gyro (deg-kg) 6.768 4.368 1.22 8.25 2.3

Error*Power

Accel (µg-W) 11590.00 9790.0 8820.0 13320.0 12950.0

Gyro (deg-W) 36.224 20.448 19.55 10.24 4.23

Taking the performance characteristics for accelerometers Raccel and Rgyro with respect to the representa-
tive navigation grade IMU generates the values in Table 3. These values predict that the MEMS and MEMS+
can be employed in a swarm sensor paradigm for both translation and attitude navigation per Equation 13
with swarms of 10 sensors and MSSF thresholds of 5. The tactical grade IMUs would be acceptable for
acceleration sensing, but the higher level of attitude error would indicate it is not as well suited overall for a
swarm sensing application.
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Figure 6 IMU Accuracy Scaled By Mass

Table 3 Performance Ratios Relative to Representative Navigation Grade IMU

Value Strategic Navigation Tactical MEMS MEMS+

Raccel 0.685 1.00 1.65 8.31 8.31

Rgyro 1.026 1.00 1.75 3.06 1.30



Figure 7 IMU Accuracy Scaled By Power
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APPLICATION TO LUNAR RETURN ENTRY NAVIGATION

Section content (list to be removed in final version):

• introduce Orion skip entry trajectory

• compare monte carlo results of true measurements vs. MIMU MSSF, N unit swarm

It is the authors’ opinion that atmospheric entry navigation represents the driving scenario for accuracy and
robustness in human spaceflight. In this regime, attitude updates are unlikely and translation state updates
dependent on communications. Therefore, an Orion lunar return skip entry trajectory [8] will be used as com-
parison application of a traditional MIMU MSSF based navigation system and a swarm paradigm MEMS+
navigation system. The duration of the trajectory is slightly over 27 minutes long and experiences a variety
of translation and attitude regimes as illustrated in Figures 8 and 9. For this analysis, 4 units are assumed
in the MIMU MSSF configuration to provide complete isolation of 2 soft failures (operation beyond spec,
but within reason) and isolation of 3 hard failures. Published MIMU accuracies are used with the updated
estimates for Orion IMU mass and power. To allow for fault detection thresholds, a T of 5 is assumed in
this system per Equation 6. By comparison, a 15 unit MEMS+ swarm is assumed to maximize accuracy
while still providing up to 5 unit failures without noticeable effect on overall performance per 4. The mass
and power for these systems are summarized in Table 4. In this particular comparison, the swarm improves
upon the traditional MSSF system mass requirement by almost 14 kg and operates with 112 fewer Watts. An
additional benefit of the swarm configuration not explored in this paper is that a subset of the units could be
operated during more benign regimes such as orbital coast or during power conservation contingencies for a
significantly smaller power requirement.

10



Truth Position and Velocity Magnitude vs. Time
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Figure 8 Skip Entry Truth ECI Position and Velocity Time Histories

Table 4 Mass and Power Requirements of MSSF and Swarm Test Cases

MIMU MSSF MEMS+ Swarm

No. Units 4 15

Total Mass (kg) 42 28.5

Total Power (W) 168 52.5

T 5 -

Fault Tolerance 3 hard, 2 soft 5

In this application, the high fidelity skip entry data from Rea [8] is used to drive IMU error models per
Equations 1 and 5 at 40 Hz. The IMUs are all assumed to be located at the vehicle center of gravity and
aligned with the body axes of the vehicle. A single GPS position and velocity update is assumed at the
top of the exoatmospheric arc at approximately 600 seconds in the simulation, but otherwise all navigation
translation and inertial attitude states evolve via dead reckoning with a simple fourth order Runge-Kutta
integration of a J2 gravity field and the IMU outputs. For the MIMU case, the error specification of a single
MIMU was doubled to approximate the effect of τ FDIR thresholds without specifically implementing FDIR
software logic. The swarm sensor configuration simply averaged the sensed acceleration and body rate from
each unit in the swarm.d

The instantaneous acceleration error characteristics (Equation 4) for both systems as driven by the trajec-
tory data are provided in Figure 10. The signature in the instantaneous error characteristics is the result of the
scale factor and non-orthogonality errors amplifying the true sensed acceleration in Figure ??. Given that the
analytic accelerometer characteristic of the MEMS+ device is 8 times as large as the MIMU (see Table 3 )
the equivalency in error factors is to be expected based upon the 1/ 15 improvement of the swarm averaging
and the FDIR threshold effect on the MSSF configuration. The gyro error characteristics based upon a 30
minute time interval at each point in the trajectory is similarly provided in Figure 12. It is in this metric that
the value of the swarm is manifest as the indication is that the attitude error (sampled at each instant) would
be an order of magnitude smaller than in the case of the MSSF.
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Truth ECI to B ypr Euler Angles vs. Time
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Figure 9 Skip Entry Truth ECI to Body Euler Angle Time Histories

A 100 run Monte Carlo was performed along the reference trajectory for each sensor configuration. The 3 σ
errors in translation and attitude state propagatoins at each sample time are provided in Figures 15 and 16 for
the MIMU MSSF and in Figures 17 and 18 for the MEMS+ swarm. The GPS update is evident at 600 seconds
after the first entry pass in the position and velocity errors for both configurations. As expected, in both cases
the primary errors in the position are found in the up (U) and alongtrack (V) directions. However, the swarm
errors are approximately half those of the MSSF system at the end of the trajectory. It is worth noting that
the actual Orion navigation scheme uses a much more sophisticated propagation approach and nominally
incorporates GPS whenever available during the trajectory, so the results presented here are conservative in
all cases in the estimation of error. Nonetheless, in a comparison of equivalent assumptions the position and
velocity accuracy of the swarm system outperforms the MSSF system in this application. The attitude errors
in the Euler angles similarly display a nod toward the swarm configuration in terms of accuracy.

CONCLUSION AND FORWARD WORK

Section content (list to be removed in final version):

• discuss results from analytic and numerical studies

• discuss practical limits

• propose future work in field testing

A new paradigm for utilizing inertial sensors has been introduced. While the concept of collecting multiple
measurements to reduce systematic, per instrument, error is not novel the application in consideration of
balancing mass, power, and fault tolerance does bring a systems engineering perspective to the problem of
selecting inertial sensors for an entry vehicle. A static comparison of navigation grade and state-of-the-art
MEMS IMUs indicates that it is not practical to match or improve on the navigation grade IMU performance
with a swarm of N sensors for acceleration measurement. However, angular rate measurement from a MEMS
based swarm system is competitive with a traditional navigation grade IMU system in terms of power at a
slightly increased mass. The integrated effect of swarm measurement averaging was shown to improve on
the MSSF approach in a highly dynamic, open-loop navigation Monte Carlo simulation of a lunar return skip
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Figure 10 MRMU MSSF to MEMS+ 15 Swarm Accelerometer Error Characteristics

entry. Further work in the areas of fault detection, swarm processing architecture design, analysis in a closed
loop GN&C simulation, and extensive field testing remain to prove out the concept of swarm sensing but the
paradigm is clearly feasible and warrants further development.
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